Case Study: Myositis Ossificans – Deadlegs aren’t just for the playground

Whether you call them a “dead leg” or a “Charlie horse” or a “cork thigh” chances are we have all had one. Mostly from the playground days where the bigger kids want to take pleasure in seeing you limp for 5 minutes. However when they happen in sport, with fully grown athletes running at full pace, a collision to the thigh can result in an injury much more serious than the one we associate with from childhood.

The reason I wanted to write this blog was that I worry  that thigh contusions are underplayed in the treatment room, potentially because we associate them with those school sports injuries that can be “run off”. This is a case study that I became involved with after initial management of the “dead leg” failed, and to this day is one I reflect on about how important initial management can be in saving severe stress in the long run. This is a case of a “routine” dead leg that is commonly seen in contact sports that resulted in 9-months of rehab to manage a secondary case of myositis ossificans.

What are we dealing with?

There are two types of “dead legs”

  1. Intramuscular: blunt force trauma to the muscle that results in a haematoma, in this scenario the epimysium remains in tact and the bleeding is contained within the muscle compartment.
  2. Intermuscular: the epimysium surrounding the muscle is broken along with the damage to the muscle tissue, the resulting haematoma spreads outside of the damaged muscle.

The intermuscular hematoma by far looks the worst, it’s the one where the whole thigh goes black and blue and looks pretty nasty. However, clinically these ones tend to heal quicker and they look a lot worse than they feel. The problem with the intramuscular haematoma is that because it is contained, the pressure can build up and become more painful. It is generally more debilitating as a result, with larger loss of range and more pain. It also doesn’t provide that visible diagnosis as very often you just get a small sign of bruise on the skin from the impact – this is where it can get dangerous as we like to be able to see injuries (hmmm something about invisible injuries and under diagnosis.. concussion?). We have discussed acute management before (here) but with dead legs, it is always worth monitoring for a few days and hoping that the leg goes black and blue.

fig2

In the first few days, range is a good indicator. On day 1 after the injury, if they are unable to achieve >90 degrees knee flexion, the prognosis is generally longer. For a bad intramuscular contusion, you could be looking around 6 weeks. This is where the coaches tell you it’s just a dead leg and they’ve had worse. But, it is structural damage to the tissue resulting in bleeding and should be given the same respect you would give to a tear. (Muscle injury classification via the Munich Consensus here).

Myositis Ossificans (MO):

MO is the formation of heterotrophic bone within the muscle following trauma (here) essentially following failed healing the body begins to lay down bone in an attempt to add stability and structure.

Case study:

The following case study is an example of an academy player, where an initial intramuscular trauma to the muscle was accelerated back to activity resulting in a 17cm tear of vastus lateralis (VL), consequently being diagnosed with MO that was estimated to be 3cm thick and of equal length to the tear.

Timeline:

  • Day 0 – initial impact to right VL via collision in training, had to be removed.
  • Day 1 – “able to squat and lunge but pain on a stretch”. Player expressed determination to train and so was allowed to.
  • Day 2-3 – continued training
  • Day 5 – Removed from training with “cramp / DOMS” in right leg.
  • Day 8 – Sudden loss of power with running and kicking, removed from training.
  • Day 30 – returned to training
  • Day 31 – played in a competitive game but substituted by manager after 25 minutes due to inability to run. Assessed by doctor and head physio. Visible contained swelling in VL, palpable solid mass, loss of range and pain on contraction of quads. MRI scan demonstrates a 17cm longitudinal tear of VL. Suspicion of MO so sent for ultra sound scan which was confirmed, absent from full team training for 9 months.
Intramuscular haematoma Contained haematoma within the vastus lateralis muscle after 30 days of continued training post-initial injury

Management:

Surgical excision of MO is only really reserved for persistent cases that don’t respond to conservative treatment (here). A collective decision was made that we should try to reduce any form of load that may stimulate further bone growth. As a result, the player was removed from all activity of the lower limbs, no soft tissue therapy to the quads and at this stage no stretching of the affected tissues.

It is neither healthy nor beneficial (or fun!) to completely rest when you are used to training 6 days a week. Credit should go to Will Abbott (@WillAbbott__) for his contribution to the maintenance of the athletic profile for this player. A periodised program was designed to maintain metabolic and cardiovascular systems, strengthen the upper body and completely unload the lower body.

Screen Shot 2016-06-19 at 9.02.28 AM A periodised model to demonstrate maintenance of unaffected systems with complete lower body unload (designed by Will Abbott)

The program included swimming, with multiple floats between the legs to reduce the temptation to kick. All gym based activities were performed seated or with legs supported when lying to reduce axial load through the legs during upper body lifts. Upper body metabolic sessions were implemented via high intensity interval training, with small rest periods to help maintain specific anaerobic demands relating to the sport. This was done using medicine balls, ropes, boxing pads.. anything to reduce the monotony of daily upper body training.

Each month was broken down further (as shown below), with follow-up ultra sound scans every 4 weeks. After the first 4 weeks, we observed a 2.5cm reduction in length which consolidated our thought process to continue de-loading. With limited exercise potential and treatment for the leg, we ran half days and 5 day weeks to help maintain a positive psychological presence.

Screen Shot 2016-06-19 at 9.02.58 AM

This was an opportunity to increase muscle mass in the upper body, an opportunity that would not have been possible during season if the player continued to play and train. This allowed a clear progressive pathway for increased lean mass with the following phases:

Hypertrophy –> Max strength –> Strength / power conversion –> Power

While the conditioning phases were as followed:

Aerobic base –> Max aerobic –> Supra max aerobic

There was a decrease in calcicific mass every month, although the rate of this varied each time. By the end of month-4, the mass had completely reabsorbed which meant the reintroduction of load to the lower libs.  By this point, the end of the season was 6 weeks away and therefore no realistic opportunity to play again this season, so the decision was made to start physical preparation for the following season.

Screen Shot 2016-06-19 at 9.03.30 AM An example of the lower body periodisation

The lower body gym program was tailored as followed:

Strength endurance* –> Strength –> Max strength –> Strength & power complex training

(* This was probably more “re-introduction to the gym” rather than true strength-endurance. But this phase would have served as a gentle hypertrophy phase given the 4 months of atrophy)

Before undergoing a linear outdoor session progressing from general preparation to sport specific drills with Tom Barnden (@barnden_tom). The player completed a full pre-season and no recurrent symptoms to date.

Conclusion:

Hopefully the lengthy timeline of this case study demonstrates the importance of giving each individual injury the respect it deserves. While I hope the management is interesting, the key discussion point is how do we approach “dead legs”? Should there be better education to athletes and coaches about the magnitude of injury? Essentially given the tissue damage, are they a tear? If an A4 piece of paper represented a muscle, and we tear down the middle (strain) or poke a hole through the centre of the page (blunt force trauma), that page is still affected and unable to serve as an A4 piece of paper. Why does the mechanism of damage change the management of injury? Given any loss of range or function following a blunt force trauma, always consider the magnitude of potential damage; monitor swelling, bruising and pain and have adequate timelines in the back of your mind – don’t rush to a diagnosis / prognosis on day 1. There will be times where there is impact and initial pain but full range and full strength – this is where our pitch-side assessment and reasoning comes in (here).

Yours in sport,

Sam

Screening: A window or just smoke?

So this our first attempt at a blog and we have decided to make the task that little bit harder by co-writing it! We hope to develop the blog as we progress covering topics (old and new) in the world of Sports Science and Medicine as well as delivering insights into our roles and how we work as part of a Multi-disciplinary team. We considered a few topics to christen our new blog, trying to emphasise the importance of communication and teamwork in a multidisciplinary team. Working in professional football, we have just conducted our end of season screening with all of our squads, from 1st team down to under-9s.

sceptical baby

“So because I’m no good at planks, I’m bound to get injured..? Hmm”

 

The first thing we want to emphasise is that screening and testing is not the be all and end all of injury prevention and performance development. We ourselves are sceptics and regularly question what we are actually looking at and what the results mean. Are we testing what we think we are testing? However, if you can maintain this mind-set, the use of screening is very useful indeed.

 

As an athlete experiences new exercise’s they will, through experience and adequate coaching, improve their understanding of what is required and therefore become better at that exercise. The tests that are used in the physical screening are, by nature, subject to the same learning effect. If the players struggle with an exercise at the start of pre-season, their naturally competitive nature means they will try harder at that test in the next screening. This can make it difficult to distinguish between actual improvements and the athletes increased awareness of what is required for a “good score”. Do they just get better at just that test or are they showing actual improvement??

 

It is basically impossible to cancel out the learning effect but by carefully selecting the other tests used in a testing/screening process we can try to identify common issues e.g. hip hike or knee valgus hidden in an Overhead squat may present itself in a single leg variation of a squat or lunge. It is also important not to coach the athlete through the movements so we can get a true picture of what movements come naturally to them..

 

“Screening is a snapshot of that athlete at a given time on a given day”

 

From a Physiotherapists’ perspective, we can use the screening to gather some very important objective outcome measures. This can provide us with some valuable pre-injury data that can be referred back to later in the season following an injury to a player, while from a Strength and Conditioning view baseline testing acts as the foundation for which subsequent training programs should be built. We only screen and test our healthy players, so any current injuries are not recorded. This way, we know that when the player was fit and competing on the field, they were able to score “X” in “Y“ test, so we should aim for at least those scores again before we consider them able to return to training. There is a debate that the results obtained from screening are a snapshot of that athlete at a given time on a given day, conducted a week earlier or later and we may have completely different scores. We agree. For this reason, it is essential that screening is not relied upon all season. We conduct Pre-Season, end of pre-season, Mid-Season and End-Season assessments to give us a “snap-shot” of the players through a competitive season. It is important to consider two key aspects of screening and testing, those being the;

 

Validity does the test you are using actually measure the thing you are trying to test for?

And Reliability;are the scores/results consistent? Is it repeatable? Any test cannot be considered valid if there is no reliability in the test- if the test is not consistent and has no repeatability then the testing method is invalid.

 

The answer? Screen EVERYDAY…

 

But away from all the formal data and testing environments, we continuously monitor other outcome measures such as heart rate variability, mood questionnaires, GPS data etc. as well as actually just looking and watching the athlete’s train and play. Essentially, this is screening all season, just not in our lab coats with a goniometer, optojump and a piece of paper.

Screening should confirm or deny your clinical assessments. It should not guide your treatment, programming or management. We use a variety of single planar and multi-planar tests, looking at rotational control and anti-rotational control, speed, strength and jump tests but essentially these movements are building blocks to allow our athletes to play sport. Screening allows us to conduct controlled, repeatable tests to give us an indication (not a definition) of movement patterns, strength, speed and control, all invaluable measures that we cannot gain on the field of play.

 

Essentially, if you know your players well enough, you should be able to predict who will have limited hip mobility, or who will produce the strongest isometric hamstring recordings, who requires additional speed or gym work, but you now have objective numbers and scores to work from so for your next screening date, you would hope to have influenced those scores.

 

Yours in Sport,

 

Conor and Sam

me and conor